
Development guidelines
Starting a new project

work under source control
provide a way to be built and run in one step
provide a way to run tests in one step
have a README.md file in the root folder of the project that explain

what the application does
how to install the required development environment
how to run the application
how to run the tests

Making decisions
Take the time to discover framework / tools / libraries.

Make small prototypes using different library / framework before choosing
one.

Take the time to learn all what your library / framwork can do. Use the
library / framework whenever you can, don’t reinvent the whell and don’t add
a library if there is no clear benefit adding it.

Use the right tool for the job. Don’t try to bend something on doing something
it is not supposed to.

Coding
Do not repeat yourself (DRY): Make sure the code doesn’t have too much
duplication.

Clean code: Make sure you delete unused code. You can find it in your
source control system.

Keep it simple and stupid (KISS): Simpler is always better. Reduce
complexity as much as possible. Less code equals less bugs equals easier
maintenance.

Boy scout rule: Always leave the campground cleaner than you found it.

Follow standard coding conventions: Check the standard coding
convention for you language, the libraries you’re using …

Root cause analysis: Always look for the root cause of a problem.
Otherwise, it will get you again and again.

Work your abstractions: Each class should abstract one and only one thing
(SRP). The abstraction should not be too thick nor too thin. Each method
should do only one thing, should be documented and should not be too big.

Consistency: If you do something a certain way, do all similar things in the
same way. Same variable name for same concepts, same naming pattern for
corresponding concepts.

Pick good names: Take the time to choose good descriptive names that
reflect the level of abstraction of the class or method you are working on. The
name of a method should describe what is done, not how it is done.

Documentation: Every function/method/class should have a standard
documentation string that describe what it does according the abstraction it
belongs to. Technical details about the implementation should go into
comments, not into documentation.

Comments: Everytime it’s not clear what some lines of code are doing,
those lines of code should have a comment that explains what they are doing
and how.

Language: Everything should be written in english and interface strings
should be translated straight away.

Testing
Learn to test! You should know about parametrized test, test context,
mocks, testing frameworks, testing libraries … Every time you learn how to
build something, you should also learn how to test what you built.

Almost everything should be tested using unittests. They should be fast,
isolated and repeatable.

Your test suite should be strong enough so that you have enough confidence
to:

Add new features
Upgrade rapidly a framework/library
Refactor a lot your code

	Development guidelines
	Starting a new project
	Making decisions
	Coding
	Testing

